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Start with the Dirac operator in Minkowski space
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Note carefully the use of the covariant partial derivative. Now, analytically continue to Euclidean
space-time,
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The above definitions result because we must flip the sign of both time and space derivative terms
to have the same sign as the mass term:
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In Minkowski space we define (this seems to be everyone’s convention)
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Again, note the signs for (co)contravariant gamma matrices, and the last minus sign comes from
anti-commuting v* to the end.

The chiral basis in Minkowski space is (i.e., Peskin)
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Our code conventions (alg_qpropw: :Wilson matrix):
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gamma(XUP) gamma(YUP) gamma(ZUP) gamma(TUP) gamma(FIVE)

0001 000-1 0010 0010 1000
0010 0010 000 -i 0001 0100
0-i00 0100 1000 1000 00-10
-i000 -1000 0i00 0100 000-1

Thus, it appears that our conventions are
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or that our v'3 are minus everyone else’s
I have checked in Mathematica (my Dirac.nb) that vLv%7v2v5 = 7%. Now, our 43 = minus Peskin’s
as expected if we start from the same Minkowski space basis, but we have flipped the sign of 7!

and ~3! This is ok, since two minus signs give a plus.

Now look at the gauge part. In Minkowski space
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Analytically continue to Euclidean space,
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The continuation of the field strength term can be worked out from
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and similarly for the (contra)covariant (dual)field strength. A* is the four-vector potential and
€o123 = +1. Then
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The F*F), term is easy- it does not flip sign. The 6 term is a bit more work. It picks up an 4
since each contribution has one and only one factor of F% or F°. To get the sign right, it is easiest
to just write out the whole term,
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and on analytic continuation
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where €1934 = +1.
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On analytic continuation we have
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Thus
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So the 0 term does not change sign under analytic continuation.
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